Layout Optimization for Distributed Relational Databases Using Machine Learning
نویسندگان
چکیده
.................................................................................................................................. 2 Acknowledgements ................................................................................................................. 4 LIST OF FIGURES ...................................................................................................................... 8 LIST OF TABLES ........................................................................................................................ 9 1. Introduction ................................................................................................................... 10 1.1. Motivation ............................................................................................................................. 10 1.2. The System ............................................................................................................................ 11 1.3. Research Questions ............................................................................................................ 12 1.4. Contributions ....................................................................................................................... 13 1.4.1. Main Assumptions ....................................................................................................... 14 1.4.2. Minimizing the Response Time of a Web-‐based Application ....................... 17 1.4.3. State Based Search over Database Layouts ........................................................ 18 1.4.4. Machine Learned Rules ............................................................................................. 19 1.5. Dissertation Outline ........................................................................................................... 20 2. Related Work ................................................................................................................. 21 2.1. Overview ................................................................................................................................ 21 2.2. Review of Industry Research .......................................................................................... 22 2.3. Review of Academia Research ........................................................................................ 28 2.4. Hybrid Solutions ................................................................................................................. 39 3. Data Placement .............................................................................................................. 50 3.1. Current Techniques for Distributing Load ................................................................. 51 3.2. Data Placement Problem .................................................................................................. 55 3.3. Data Placement Solution .................................................................................................. 58 3.4. State Space Search over Layouts .................................................................................... 59 3.5. Horizontal Partitioning ..................................................................................................... 62 3.5.1. Operator and Framework Limitations ................................................................. 64 3.5.2. Database Constraints ................................................................................................. 66 3.5.3. Table Relationships .................................................................................................... 68 3.5.3.1. One-‐to-‐One ........................................................................................................................... 68 3.5.3.2. One-‐to-‐Many ........................................................................................................................ 69 3.5.3.3. Many-‐to-‐Many ..................................................................................................................... 69 3.5.4. Partitioning Rules ....................................................................................................... 70 3.5.4.1. Partitioning Table “A” ...................................................................................................... 70 3.5.4.2. Partitioning Table “A” and “B” Together .................................................................... 71 3.5.5. Partially Ordered Set .................................................................................................. 73 3.5.6. Hasse Diagram .............................................................................................................. 73 3.5.7. Maximal Element ......................................................................................................... 75 3.5.8. HP Key Search ............................................................................................................... 76 3.6. Vertical Partitioning .......................................................................................................... 78 3.6.1. Operator and Framework Limitations ................................................................. 79 3.6.2. VP Key Search ............................................................................................................... 80 3.7. Combined Vertical Partitioning ..................................................................................... 82
منابع مشابه
Relational Databases Query Optimization using Hybrid Evolutionary Algorithm
Optimizing the database queries is one of hard research problems. Exhaustive search techniques like dynamic programming is suitable for queries with a few relations, but by increasing the number of relations in query, much use of memory and processing is needed, and the use of these methods is not suitable, so we have to use random and evolutionary methods. The use of evolutionary methods, beca...
متن کاملKnowledge Discovery in Databases: An Attribute-Oriented Approach
Knowledge discovery in databases, or data mining, is an important issue in the development of dataand knowledge-base systems. An attribute-oriented induction method has been developed for knowledge discovery in databases. The method integrates a machine learning paradigm, especially learning-from-examples techniques, with set-oriented database operations and extracts generalized data from actua...
متن کاملFactorized Databases: Past and Future Past
In this talk I will overview the FDB project at Oxford on succinct, lossless representations of relational data that I call factorized databases. I will first present a characterization of the succinctness of results to conjunctive queries and how factorizations can speed up query processing.I will then comment on how this succinctness characterization relates to seemingly disparate results on:...
متن کاملCombining heterogeneous classifiers for relational databases
Most enterprise data is distributed in multiple relational databases with expert-designed schema. Using traditional single-table machine learning techniques over such data not only incur a computational penalty for converting to a flat form (mega-join), even the human-specified semantic information present in the relations is lost. In this paper, we present a practical, twophase hierarchical me...
متن کاملDRILA: A Distributed Relational Inductive Learning Algorithm
This paper describes a new rule discovery algorithm called Distributed Relational Inductive Learning DRILA, which has been developed as part of ongoing research of the Inductive Learning Algorithm (ILA) [11], and its extension ILA2 [12] which were built to learn from a single table, and the Relational Inductive Learning Algorithm (RILA) [13], [14] which was developed to learn from a group of in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012